
A Model-Based Approach to Implementing the

Arrowhead Framework for Industrial IoT

Jan van Deventer

October 31, 2024

Abstract

The increasing complexity of Industrial Internet of Things (IoT) systems ne-

cessitates robust methodologies for efficient development and deployment. This

paper presents a model-based implementation of an IoT solution to swiftly em-

power engineers to program compliant systems and technician to deploy these

systems. This paper contributes to the field of IoT by demonstrating how model

based system engineering can streamline the development and deployment pro-

cess, ultimately improving system maintainability and scalability.

For illustrative purposes, the Arrowhead framework, an IoT automation so-

lution, is used along with a climate control use case. This work highlights key

aspects such as resilience, interoperability, cybersecurity, and semantic reason-

ing in IoT solutions.

Keywords

MBSE, CPS, OPC UA, Modbus, MQTT, Golang

1

1 Introduction

Once upon a time, there were telephone directories. Their names were White

Pages and Yellow Pages. They were quite thick soft cover books, usually pub-

lished on a yearly basis. The White Pages listed the telephone subscribers from

a specific area in alphabetical order with their address and telephone number.

The Yellow Pages listed businesses in alphabetical order by the type of the ser-

vices they offered. So, if anybody had a clogged kitchen sink, their fingers would

just have to walk across the Yellow Pages to find a suitable plumber. Once con-

tacted, the plumber would, with a smile, come to clear the drain. It should be

noted that the Yellow Pages only exposed the registered services, such as those

offered by a plumber or a plumbing company. The plumber himself is not a

service but a resource, with an address and a phone number. It is the plumber’s

skills that are exposed as services.

The Internet has revolutionized our society and abolished the White and

Yellow Pages. People nowadays swipe over their Internet-connected devices to

find the services they seek, and have forgotten about the Yellow Pages. Nonethe-

less, the Internet has not overcome the plumber because it has not succeeded in

digitalizing him (though it has done so with bank tellers, who are not part of

this odd fairytale).

As computing devices have shrunk in size and cost while increasing in power,

their impact has extended beyond society into industry. The Internet Revolu-

tion began in the late 20th century, gaining momentum with the world wide web;

soon industries adopted it to enable communication between devices and sys-

tems. This expansion has fueled movements like Germany’s Industry 4.0 and

the Industrial Internet Consortium (IIC) in the United States. These move-

ments are part of the so-called fourth industrial revolution, which democratizes

how “things” communicate, forming the Internet of Things (IoT).

The rise of IoT has disrupted traditional industrial structures, turning the

hierarchical ISA-95 pyramid into a complex web of interconnected systems. To

2

manage the potential chaos, various reference architectures and frameworks

have been proposed. Examples include RAMI 4.0 for Industry 4.0 and the

Industrial Internet Reference Architecture (IIRA), which provide blueprints for

building interoperable systems. In addition, proprietary architectures such as

AWS IoT and Microsoft Azure IoT are also prevalent. European frameworks,

like FIWARE and Arrowhead, offer additional alternatives, especially within

European-funded initiatives.

These frameworks provide valuable guidance, but their implementation is not

straightforward. Developers must transform abstract models into operational

systems, which is both complex and time-consuming. This work focuses on how

Model-Based Systems Engineering (MBSE) can streamline this process.

The hypothesis of this work is that MBSE can expedite the development pro-

cess by providing clear models that simplify the transformation from framework

to code. By doing so, MBSE can enhance knowledge transfer to technicians and

engineers, making the systems more resilient through better understanding.

Several studies have highlighted the importance of training in the successful

deployment of IoT solutions. For instance, Valmohammadi emphasizes the need

for investment in IT infrastructure and employee training to accelerate IoT

adoption in organizations. The steep learning curve of IoT systems requires a

structured approach, where comprehensive educational programs are crucial to

equipping engineers with the necessary skills.

Model-Driven Engineering (MDE), a subset of MBSE, has been proposed

as a solution to increase exciplicitness of concepts in IoT development. By

automating code generation for hardware devices and server-side applications,

MDE helps ease the learning curve and reduce the time required for engineers

to develop IoT systems.

The goal of this work is to enable rapid training for deployment technicians

within half a day and for application engineers within one day. After reading

this article, the reader should reflect on which IoT implementations they are

most comfortable with and why.

3

To demonstrate this concept, MBSE is applied to the Arrowhead framework,

with its implementation relying on the Google Go programming language. The

implementation is made available as an open-source project on GitHub. In the

following sections, the Arrowhead framework is briefly introduced, followed by

a model of the framework that is packaged into a Go module. A climate control

use case is presented to illustrate a local cloud deployment. Finally, a discus-

sion covers important topics such as resilience, interoperability, compatibility,

cybersecurity, and semantic reasoning.

2 The Arrowhead Framework

The Arrowhead framework was developed to address the needs of the Euro-

pean manufacturing industry. It was funded through various European Union

projects aimed at improving cybersecurity and interoperability between legacy,

current, and future automation systems. The framework’s primary objective

is to provide a low-latency, service-oriented architecture where systems can

communicate directly with one another. To secure this communication, the

Arrowhead framework employs encryption mechanisms based on public key in-

frastructure.

In the context of IoT, each entity consists of a “thing” and an interfacing

software that connects the thing to the cyber world and the Internet. The

“thing” can be a physical device like a sensor or actuator, or it can be a more

abstract asset such as an algorithm or database. In RAMI 4.0 terms, the thing

is called an asset, and the software that interacts with it is called a shell. The

Arrowhead framework combines the software and asset into what it calls a sys-

tem. In this work, we use the terms “husk” for the software interface and “unit

asset” for the underlying resource. This distinction helps highlight the differ-

ences between RAMI 4.0 and the Arrowhead framework in how they model asset

administration and services.

The Arrowhead framework adopts a service-oriented architecture (SOA) sim-

4

ilar to the Yellow Pages analogy introduced earlier. Just as the Yellow Pages

register available services, the Arrowhead framework’s Service Registry system

tracks services offered by different systems. Each system exposes its unit as-

set’s functionalities as services, which other systems can discover and consume

at run time. Late binding allows systems to find and connect with each other

dynamically during their operation, ensuring flexibility and adaptability.

The framework provides three core systems to manage the service lifecycle:

the Service Registry, Orchestrator, and Authorization systems. When a sys-

tem seeks a service, it communicates with the Orchestrator, which checks the

Service Registry for available services and consults the Authorization system to

verify that the service can be consumed. The Orchestrator then provides the

requesting system with the service’s resource location, allowing it to consume

the service directly.

One of the key features of the Arrowhead framework is its fine-grained service

authorization mechanism. For example, a data logger may be authorized to

access the state of an actuator but not to modify it, while a controller system

may have permission to both read and write actuator states.

A distinctive aspect of the Arrowhead framework is the concept of a local

cloud, which is a set of systems that function independently but can communi-

cate with other clouds when necessary. Each local cloud must have a Service

Registry, Orchestrator, and Authorization system to maintain autonomy and

security. While the size of a local cloud is not predefined, it should remain

manageable to ensure efficient operation. Communication between clouds is fa-

cilitated by GateKeeper and Gateway systems, allowing for secure, cross-cloud

interactions.

The Arrowhead framework addresses the challenges of interoperability through

the husk (software interface). On the one hand, the husk communicates with

the unit asset, typically using protocols defined at design time. On the other

hand, it facilitates communication between systems using various protocols, with

protocol-specific servers handling different message formats and payloads.

5

With the overall concepts of the Arrowhead framework presented, the next

step is to model this understanding. In the following section, we will demon-

strate how the framework can be modeled using both structural and behavioral

diagrams, facilitating a clearer understanding of its components and interac-

tions.

3 Modeling the Framework

Visual modeling languages are used to provide a standardized way to visual-

ize the design and structure of systems. Examples of these languages include

the Universal Modeling Language (UML) and the Systems Modeling Language

(SysML). These languages offer a taxonomy of diagrams that can be broadly

divided into two categories: structural and behavioral diagrams. Both cate-

gories are necessary to fully describe the systems and interactions in a software

architecture, and they are applied in this work.

To begin, the structural aspects of the Arrowhead framework need to be

modeled. A local cloud is composed of systems that run on devices, each system

consisting of a husk and one or more unit assets. The husk is responsible for

exposing the functionalities of the unit assets as services that other systems can

consume. Figure 1 presents a symbolic aggregation of these components as a

diaagrams inspired from RAMI 4.0 and Arrowhead documentation and as a class

or block body diagram. These high-level models emphasize the relationships

between the systems, unit assets, and services. In the top figure, the lollypop

and socket extensions represent providing and consuming services respectively.

The Arrowhead framework usually depicts a system as a yellow block with its

lollypop and socket extensions. The lower diagram represents a class or block

body diagram and can be used as a map when navigating the source code.

Next, the behavioral aspects of the Arrowhead framework are modeled to

capture the dynamic interactions between systems. Figure 2 illustrates the main

use cases for a generic Arrowhead system. With the word generic is meant

6

Husk

UnitAsset

Producing services Consuming services

System

Device Husk Unit Asset

Service

1

11 1..*

1..*

Server

1..*

Figure 1: Two representations of a system. RAMI 4.0-Arrowhead framework
style representation, and class or block body diagram.

here that all Arrowhead systems make use of these use cases. To the left, the

deployment technician is the only human actor in the figure and plays a crucial

role in configuring the system, which does not require recompiling the software.

The same configuration use case is used for all systems, even future ones. The

other actors are systems within the same local cloud.

One key framework stipulation is that all systems must register their services

with the leading Service Registrar. Even the leading Service Registrar must

register its services with itself to ensure consistency and resiliency within the

local cloud. Service discovery is managed by the Orchestrator, which checks

for available services and verifies authorization before presenting the requesting

system with the appropriate resource location. The Authorization use case is

grayed out because it has not yet been completed in the current implementation.

To the right of Figure 2, the interaction between the system (or husk) and its

unit asset(s) is depicted. This relationship is clear when dealing with physical

unit assets such as sensors, actuators, or PLCs, where the system interfaces

with these external devices. In cases where the unit asset is an algorithm, the

interchange may remain hidden within the system, and wraps the intellectual

property, which is then not exposed.

7

Configuration

Service
registration

Service
discovery

Service
provision

UnitAsset
interaction

Authorization

Deployment technician

Application system

Orchestrator

Service Registrar

Generic Arrowhead compliant system

UnitAsset
examples:
 - sensor
 - actuator
 - database
 - algorithm
 - legacy solution
 - PLC with x IOs

Service
Consumption

Protocol
specific
servers

PKI
Certificate

Certificate Authority

Doc

Figure 2: Use cases for a generic Arrowhead-compliant system, showing inter-
actions within a local cloud.

Using models to represent both the structural and behavioral aspects of

the framework facilitates communication among stakeholders. These models

help ensure a shared understanding of the system’s architecture and simplify

the software implementation process by offering a visual guide to the system’s

components and interactions.

4 The Implementation

Implementing the concepts of a reference architecture or framework, even when

well-modeled, can be challenging. It is during the implementation that subtle

details reveal their true influence, often complicating the process.

One of the core strengths of Model-Based Systems Engineering (MBSE) is its

independence from specific reference architectures, frameworks, or programming

languages. In other words, MBSE can and should be applied to any software

solution if the hypothesis about its effectiveness holds true.

In this particular work, the chosen programming language for implementing

the framework is Go (Golang). The implementation is made available through

two GitHub repositories: one for the library, called mbaigo, and another for a

8

collection of systems, called systems. The mbaigo library is composed of three

packages: components, forms, and use cases.

The components package contains the core entities such as system, device,

husk, unit asset, and service, which were introduced in the previous section.

The use cases package corresponds to the primary use cases of the Arrowhead

framework, such as service registration, discovery, and consumption. Finally,

the forms package handles the information exchange payloads.

The systems repository contains several example systems that demonstrate

how to use the mbaigo library. Each system in systems is organized into two

files: systemname.go and thing.go. This separation is intended for pedagogical

reasons, where systemname.go deals with the cyber aspect of the system, and

thing.go deals with the unit asset.

The main function of each system aggregates components of the mbaigo li-

brary and starts the system. Figure 3 shows the activity diagram for the main()

function. The system is first instantiated and configured using a configuration

file, which is located in the same directory as the executable. If the configura-

tion file is missing, it is generated during the system’s first run, and the system

shuts down to allow the deployment technician to update the configuration.

Instantiate components &
Aggregate system

start

end

Configure system and start unit assets Generate keys and obtain X.509
Certificate

Register services Start servers

Run unit assets

loop

Reregister services Listen & Serve

Wait until shutdown request Deregister services Shutdown servers

Crtl + C

Figure 3: Activity diagram of the main() function of a generic system. The
gray looping block consists of processes that are concurrent goroutines, which
terminate upon an external request.

The thing.go file defines the unit asset structure and specifies which of its

attributes are configurable. Once the configuration file is updated, the unit

9

assets are instantiated and started with the appropriate settings. For example,

in the case of a 1-wire temperature sensor, the configuration file would specify

the serial number of each sensor and its respective location.

The system generates a private key and posts a certificate signing request to

the Certificate Authority. These private keys are not stored on the file system

and are lost upon system shutdown along with the certificates. When certificates

are use for secured communication, mutual certification is required, that is both

the client and the server must have a valid certificate. At the time of writing,

the authenticating system is missing so we cannot claim complete cybersecurity.

Both software and hardware authentication is under development.

After configuration and security setups, the services are registered with the

leading Service Registrar. This registration process repeats at regular intervals

to maintain an up-to-date catalog of available services with the leading Service

Registrar. If the system fails to reregister its services, the Service Registrar re-

moves the entries to prevent stale information. These service re-registrations are,

like the unit assets’ operations, concurrent processes that rely on lightweight gor-

outines. Finally, the system starts its servers and listens for incoming requests,

remaining in operation until it receives a shutdown command.

When a shutdown command is received, the system deregisters all its ser-

vices, shuts down the servers, and disconnects from its unit assets. This struc-

tured shutdown process ensures a graceful termination of the system.

Having having an http server, each system supplies a web server to em-

power the deployment technician to verify the installation with a standard web

browser. The web pages present information about the system, its hosting

device, its unit assets and their services. The address to these web pages is

provided by the system upon start up.

10

5 The Prototypes

Prototypes play a critical role in developing implementations and facilitating

knowledge transfer. In this work, several prototype systems are introduced, five

of which are used to demonstrate the concept of a local cloud. The other systems

include as assets a camera, a microphone, an OPC UA server, a Modbus server,

and an MQTT broker providing further examples of how different assets are

seamlessly integrated into the framework.

The local cloud prototype focuses on a climate control use case, making it

relatable to the reader. This cloud consists of five systems: a Service Regis-

trar, an Orchestrator, a 1-wire temperature sensor, a pulse-width modulated

servo motor emulating a valve, and a thermostat. Each system registers its ser-

vices with the Service Registrar, ensuring they are available for discovery and

consumption by other systems.

The thermostat system communicates with the Orchestrator to discover the

temperature sensor and valve services within the same room. The Orchestrator

checks the Service Registry to confirm the availability of these services and

provides the thermostat with their URLs. Every ten seconds, the thermostat

makes a request to the temperature sensor to obtain the current temperature

and calculates a new valve position. It then makes a request to the servo motor

to update the valve position based on the calculated value.

Besides the position service, the thermostat system also offers two additional

services: a jitter service and a set point service. The jitter service reports the

time taken to complete the two requests, which is consistently under ten mil-

liseconds. The set point service allows users to read or update the thermostat’s

desired temperature. With such a setup, one can easily have a low cost demand

response solution to save energy [?]

The camera system, with a Raspberry Pi camera as an asset, takes a picture

as a service upon receiving a request. However, instead of returning the image

directly, the system responds with a JSON payload containing the location of

11

the image and a timestamp. A second request is required to retrieve the image

file as a JPEG, illustrating how files can be exchanged as part of a service. The

recorder system is similar to provide sound recordings. It uses a USB connected

microphone as an asset.

The PLC systems provide access to input/output signals and registers, de-

pending on the specific communication protocol used. The UAclient system,

with an OPC UA server as an asset, offers browse and access services to nodes.

By default the object folder node is presented allowing a deployment technician

to navigate the available nodes and select the ones of interest. The Modbus

system, on the other hand, requires prior knowledge of the PLC’s register map,

which is defined in the system’s configuration file. Another popular IoT protocol

is MQTT that relies on a broker with a publish-subscribe paradigm of topics.

The Telegrapher system has an MQTT broker as an assets and metamorphose

topic into services.

Readers are encouraged to explore the GitHub repositories to better under-

stand the implementation of these prototypes. Starting with simpler systems

like the temperature sensor or camera provides a good foundation before exam-

ining more complex systems such as the Service Registrar. The Service Registrar

system is the most intricate, as it includes both an embedded SQL database and

a scheduler that handles the automatic cleanup of expired service registrations.

The presented prototypes demonstrate how the Arrowhead framework can

be implemented and deployed in a real-world scenario. In the next section, we

discuss key aspects such as resilience, interoperability, cybersecurity, and the

potential for reasoning in a local cloud environment.

6 Discussion

The goal of this work is to facilitate knowledge transfer through the use of

Model-Based Systems Engineering. The reader should now have a compre-

hensive understanding of the current implementation of the IoT framework, as

12

guided by the model diagrams and repository examples. Using MBSE to engi-

neer both the structure and behavior of systems supports this goal while offering

additional benefits that are not immediately obvious.

The fairytale analogy used in the introduction has a deeper purpose here.

Abstraction in modeling provides significant advantages, but relating it to some-

thing familiar—like the Yellow Pages—helps ease the cognitive load. The exam-

ple of the plumber also serves to illustrate the relationship between a system,

its assets, and the services it exposes. This reflection promotes a deeper under-

standing of how services and resources interact in an IoT framework.

One significant advantage of a service-oriented architecture, such as the one

used in the Arrowhead framework, is that the systems are loosely coupled. This

means that systems can be developed independently and bound together only at

run time. For example, the temperature sensor system provides its temperature

service without needing to know how it will be used by other systems. Simi-

larly, the thermostat system does not need to know whether the temperature

reading comes from a 1-wire system or a PLC, as long as the service matches

its requirements (service definition, unit, and location).

Interestingly, the use cases implemented in the mbaigo library are also loosely

coupled. Each use case is generally independent of the others and is only tied

to the components and form packages. This allows continuous development and

evolution of each use case with minimal or no impact on the overall function-

ality of the systems. As a result, the framework can evolve over time without

requiring major redesigns.

One of the key requirements of the Arrowhead framework is interoperability.

The presented prototypes demonstrate that services can be consumed regardless

of whether the asset uses 1-wire, OPC UA, Modbus, or MQTT. Additionally,

interoperability between systems is also crucial, especially when dealing with

constrained devices that may rely on protocols like CoAP. To address this, the

mbaigo library provides protocol-specific servers, allowing seamless integration

of various communication protocols.

13

Interoperability extends to the payload formats as well. The payloads ex-

changed between systems are versioned to ensure backward compatibility, mean-

ing that older systems can still communicate with newer ones even if the data

schema evolves. This is achieved by including a version field in the forms, al-

lowing the correct mapping of information to the appropriate object attributes.

More technically, Forms is really a Go interface that each form must imple-

ment. The mbaigo library offers packing and unpacking functions that handle

the serialization (xml and json) and marshaling to the correct form.

In the use case diagram, the deployment technician is the only human who in-

teracts directly with a generic system. The systems provide their systemconfig.json

at their initial start up. It is the same configuration use case and code used for

all systems making configuration of systems consistent.

Efficiency is paramount in the development, deployment, and maintenance

of IoT systems. MBSE supports maintenance by ensuring that bugs in use cases

only need to be fixed once, as the use cases are shared across systems. Another

area that benefits from efficiency is security, particularly when using public key

infrastructure. Automating the generation of keys and certificates at startup

reduces the cost and complexity of deploying secure systems, preventing security

vulnerabilities.

In an industrial plant, systems and hardware can change or fail. To address

failures, the Arrowhead framework requires systems to reregister their services

at regular intervals, ensuring that the Service Registry maintains an up-to-date

list of available services. If a system fails to reregister, its services are auto-

matically deregistered, preventing stale entries. If the leading Service Registrar

fails, another one takes over the leading role, if more than Service Registrar is

deployed in a local cloud. Resiliency is a basic requirement of the implementa-

tion.

The clearly defined data models (such as those in the components package)

lay the foundation for information models and reasoning. For example, one

can reason that a local cloud is non-functional without a Service Registrar, but

14

it becomes resilient with multiple registrars. These reasoning capabilities are

part of future work, where the Arrowhead framework ontology will be further

explored. The semantic model of deployed systems is already accessible similar

to the online documentation (using onto instead of doc in the URL path).

Given the emphasis on knowledge transfer, three types of documentation are

provided. First, manually written README.md files are included in the reposito-

ries to explain the systems and their purpose. Second, an online “black box”

documentation is available through the system’s web server, allowing deploy-

ment technicians to verify system configurations via a standard web browser.

Third, a “white box” documentation is generated using Go Doc, which provides

detailed documentation accessible through a supported integrated development

environement or the pkg.go.dev website.

The choice of Google Go as the implementation language offers several ad-

vantages. Its straightforward cross-compilation process minimizes platform de-

pendencies, providing compatibility across various systems while yielding fast

executables. Additionally, Go’s lightweight goroutines and channels make con-

current programming more manageable, allowing multiple services (e.g., service

registration) to operate independently within an efficient concurrency model.

The resulting system binaries are typically lightweight, often around 10 MB in

size, depending on the application’s complexity.

In summary, MBSE has proven to be an effective method for developing and

deploying an IoT framework while simplifying knowledge transfer and system

maintenance. In the next section, we conclude the work and reflect on the

broader implications of this approach for IoT development.

7 Conclusion

The application of MBSE to the Arrowhead framework has yielded several ben-

efits. First, the use of models has facilitated knowledge transfer by providing

a clear, visual guide to the system’s architecture and behavior. Second, the

15

separation of concerns between systems and their unit assets has allowed for

greater flexibility in configuration, without the need for recompilation. Finally,

the service-oriented architecture employed by Arrowhead framework, combined

with the loosely coupled use cases in the mbaigo library, has supported a scalable

and resilient system design.

Readers are encouraged to explore the GitHub repositories associated with

this work, where the complete implementation of the Arrowhead framework in

Google Go is available. By studying the examples provided and experimenting

with different systems, practitioners can deepen their understanding of how to

apply MBSE in real-world scenarios.

The implications of this work extend beyond the specific implementation

presented here. The MBSE approach can be applied to other IoT frameworks

and architectures, enabling faster development, better knowledge transfer, and

more maintainable systems across various industrial and commercial contexts.

While the Arrowhead framework and IoT systems in general can be complex,

this work demonstrates that such complexity does not necessarily translate into

complicated implementations.

16

